Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 8, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Abstract The disease burden from Legionella spp. infections has been increasing in many industrialized countries and, despite decades of scientific advances, ranks amongst the highest for waterborne diseases. We review here several key research areas from a multidisciplinary perspective and list critical research needs to address some of the challenges of Legionella spp. management in engineered environments. These include: (i) a consideration of Legionella species diversity and cooccurrence, beyond Legionella pneumophila only; (ii) an assessment of their environmental prevalence and clinical relevance, and how that may affect legislation, management, and intervention prioritization; (iii) a consideration of Legionella spp. sources, their definition and prioritization; (iv) the factors affecting Legionnaires’ disease seasonality, how they link to sources, Legionella spp. proliferation and ecology, and how these may be affected by climate change; (v) the challenge of saving energy in buildings while controlling Legionella spp. with high water temperatures and chemical disinfection; and (vi) the ecological interactions of Legionella spp. with other microbes, and their potential as a biological control strategy. Ultimately, we call for increased interdisciplinary collaboration between multiple research domains, as well as transdisciplinary engagement and collaboration across government, industry, and science as the way toward controlling and reducing Legionella-derived infections.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract SARS-CoV-2 wastewater surveillance (WWS) at wastewater treatment plants (WWTPs) can reveal sewered community COVID-19 prevalence. For unsewered areas using septic tank systems (STSs) or holding tanks, how to conduct WWS remains unexplored. Here, two large STSs serving Zuma Beach (Malibu, CA) were studied. Supernatant and sludge SARS-CoV-2 concentrations from the directly-sampled STSs parameterized a dynamic solid–liquid separation, a mass balance-based model for estimating the infection rate of users. Pumped septage before hauling and upon WWTP disposal was also sampled and assessed. Most (96%) STS sludge samples contained SARS-CoV-2 N1 and N2 genes, with concentrations exceeding the supernatant and increasing with depth while correlating with total suspended solids (TSS). The trucked septage contained N1 and N2 copies which decayed (coefficients: 0.09–0.29 h−1) but remained detectable. Over approximately 5 months starting in December 2020, modeled COVID-19 prevalence estimations among users ranged from 8 to 18%, mirroring a larger metropolitan area for the first 2 months. The approaches herein can inform public health intervention and augment conventional WWS in that: (1) user infection rates for communal holding tanks are estimable and (2) pumped and hauled septage can be assayed to infer where disease is spreading in unsewered areas.more » « less
An official website of the United States government
